homothétie

homothétie
(entrée créée par le supplément)
(o-mo-té-tie, prononcé ainsi par M. Chasles qui a fait le mot) s. f.
Terme de géométrie. Similitude de forme et de position entre deux figures par rapport à un point donné ; l'homothétie est directe si les deux figures sont du même côté du point donné, et inverse si elles sont de part et d'autre du point donné. Le point donné est le centre d'homothétie.
   Une personne qui signe : Un philologue consultant, et qui paraît fort compétente sur les questions de philologie, dit dans le Messager du Midi, du 28 oct. 1876, 2e page, que M. Chasles a outre-passé son droit en fixant, comme il a fait, la prononciation du mot qu'il créait, et qu'il faut prononcer ho-mo-té-sie, ainsi que dans épizootie, aristocratie, etc. Je serais disposé à me ranger du côté du philologue consultant si le mot était régulièrement formé.
   Du grec, semblable, et, position. L'analogie grecque exigerait homothésie, les composés de ce genre prenant la finale grecque.

Dictionnaire de la Langue Française d'Émile Littré. . 1872-1877.

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Homothétie — de centre O Dans un espace vectoriel, l’homothétie de rapport k non nul est l application qui à tout vecteur v associe le vecteur kv, où le scalaire k est appelé rapport de l homothétie. Dans un espace affine l’homothétie de centre 0 et de… …   Wikipédia en Français

  • Homothetie — Homothétie Une homothétie est une transformation géométrique d un espace affine dans lui même, fixant un point O appelé centre de l homothétie. Une homothétie se définit par son centre (un point de l espace affine) et son rapport (un scalaire non …   Wikipédia en Français

  • homothétie — [ ɔmɔtesi ] n. f. • v. 1850; de homo et gr. thesis « position » ♦ Math. Homothétie de centre O et de rapport k : application qui, à un point M, associe le point M tel que = k . ● homothétie nom féminin (du grec thes …   Encyclopédie Universelle

  • Homothetie — In der Geometrie versteht man unter einer Homothetie eine Affinität, also eine bijektive affine Abbildung eines affinen Raumes A in sich, derart, dass für jede Gerade die Bildgerade f(g) parallel zu g verläuft: Zu den Homothetien zählen genau die …   Deutsch Wikipedia

  • Homothetie (mathematiques elementaires) — Homothétie (mathématiques élémentaires) Fig. 1. L image par une chambre noire correspond à une homothétie de centre la lentille et de rapport négatif. Dans la « vie courante », l homothétie correspond aux agrandissements et aux… …   Wikipédia en Français

  • Homothétie (mathématiques élémentaires) — Dans la « vie courante », l homothétie correspond aux agrandissements et aux réductions. Article détaillé : homothétie. Définition Soit un point M,un point O et un nombre k. On dit que le point M est l image du point M par l… …   Wikipédia en Français

  • Rapport Homothétique — Homothétie Une homothétie est une transformation géométrique d un espace affine dans lui même, fixant un point O appelé centre de l homothétie. Une homothétie se définit par son centre (un point de l espace affine) et son rapport (un scalaire non …   Wikipédia en Français

  • Rapport homothétique — Homothétie Une homothétie est une transformation géométrique d un espace affine dans lui même, fixant un point O appelé centre de l homothétie. Une homothétie se définit par son centre (un point de l espace affine) et son rapport (un scalaire non …   Wikipédia en Français

  • hétie — homothétie prophétie …   Dictionnaire des rimes

  • Plan affine arguésien — Axiome de Desargues Dans une approche axiomatique de la géométrie, un plan affine arguésien (ou desarguésien, ou de Desargues) est un plan affine vérifiant, en plus des axiomes d incidence, l axiome de Desargues : Pour toutes droites d1 …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”